Références

Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., & Kievit, R. A. (2019). Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res, 4, 63. https://doi.org/10.12688/wellcomeopenres.15191.1
Anscombe, F. J. (1973). Graphs in statistical analysis. Am Stat, 27(1), 17–21.
Bickel, P. J., Hammel, E. A., & O’Connell J, W. (1975). Sex bias in graduate admissions: Data from berkeley. Science, 187(4175), 398–404. https://doi.org/10.1126/science.187.4175.398
Chatellier, G., & Durieux, P. (2003). Moyenne, médiane, et leurs indices de dispersion : Quand les utiliser et comment les présenter dans un article scientifique ? Rev Mal Respir, 20(3), 421–424. https://doi.org/RMR-06-2003-20-3-0761-8425-101019-ART17
Dart, T., & Chatellier, G. (2003). Comment décrire la distribution d’une variable ? Rev Mal Respir, 20(6), 946–951. https://doi.org/RMR-12-2003-20-6-0761-8425-101019-ART19
Gonzales, V. A., & Ottenbacher, K. J. (2001). Measures of central tendency in rehabilitation research: What do they mean? Am J Phys Med Rehabil, 80(2), 141–146. https://doi.org/10.1097/00002060-200102000-00014
Grenier, E. (2007). Quelle est la « bonne » formule de l’écart-type ? Revue MODULAD, 37, 102–105.
Halperin, S. (1986). Spurious correlations–causes and cures. Psychoneuroendocrinology, 11(1), 3–13. https://doi.org/10.1016/0306-4530(86)90028-4
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc, 41(1), 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278
Jané, M. B., Xiao, Q., Yeung, S. K., Dunleavy, D. J., Röseler, L., Elsherif, M., Cousineau, D., Caldwell, A. R., Johnson, B. T., & Feldman, G. (2023). Effect sizes and confidence intervals guide. https://matthewbjane.quarto.pub/guide-to-effect-sizes-and-confidence-intervals/
Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. The Statistician, 47, 183–189. https://doi.org/10.1111/1467-9884.00122
Kelley, K. (2005). The Effects of nonnormal distributions on confidence Intervals around the standardized mean difference: Bootstrap and parametric confidence intervals. Educ Psychol Meas, 65(1), 51–69. https://doi.org/10.1177/0013164404264850
Labreuche, J. (2010). Les différents types de variables, leurs représentations graphiques et paramètres descriptifs. Sang Thrombose Vaisseaux, 22(10), 536–543. https://doi.org/10.1684/stv.2010.0541
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol., 4. https://doi.org/10.3389/fpsyg.2013.00863
Li, J. C.-H. (2016). Effect size measures in a two-independent-samples case with nonnormal and nonhomogeneous data. Behav Res, 48(4), 1560–1574. https://doi.org/10.3758/s13428-015-0667-z
Navarro, D. (2018). Learning statistics with R. UNSW Computational Cognitive Science.
Rousselet, G. A., & Wilcox, R. R. (2020). Reaction times and other skewed distributions: Problems with the mean and the median. Meta-Psychology, 4, 1–39. https://doi.org/10.15626/MP.2019.1630
Weissgerber, T. L., Milic, N. M., Winham, S. J., & Garovic, V. D. (2015). Beyond bar and line graphs: Time for a new data presentation paradigm. PLoS Biol, 13(4), e1002128. https://doi.org/10.1371/journal.pbio.1002128
Wickham, H., & Grolemund, G. (2017). R for Data Science. O’Reilly.
Wilke, C. O. (2018). Fundamentals of data visualization. O’Reilly Media, Inc. Retrieved from https://clauswilke.com/dataviz.